Master, Vollzeit
- Campus Hagenberg
- E-Mail im@fh-hagenberg.at
- Telefon +43 5 0804 22104
- Infoblatt downloaden Anfrage stellen
Studienplan
Module
Foundations
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Intelligence |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Artificial IntelligenceGraduates have an overview of methods and approaches of artificial intelligence. Students understand the suitability and limitations of various methods and can identify suitable algorithms for specific tasks and apply them in a meaningful way. Artificial Intelligence
Logical foundations; Classical (non-data) AI; Data-based AI; Reinforce-ment learning; Bayes nets; Backpropagation; Multi-layer perceptrons; Neural networks; Deep learning; Algorithms and software. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Human Computer Interaction |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Human Computer InteractionGraduates will be familiar with the basic principles of human-computer interaction design, in particular the conceptual design of interfaces taking into account context-related requirements as well as the perceptual and cognitive psychology of human information processing. They know es-sential design guidelines and best practices derived from these principles and can actively apply them in the design process. Students know meth-ods for the quantitative and qualitative evaluation of user interfaces and have the skills to independently design, conduct and evaluate user studies. Human Computer Interaction
Overview HCI Design; Human Perception and Performance Models (e.g., Fitts's Law, Power Law of Practice, Hick's Law), Embodied Interaction, Special Topics in HCI (e.g., Gestural Interaction, Proxemic / Spatially-Aware Interaction, Tangible Interaction, Voice Interaction, Gaze Interaction); Introduction to empirical research methods (quantitative, qualitative), design and implementation of empirical studies, evaluation and reporting of results. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Information Visualization |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Information VisualizationThe analysis and visual representation of abstract data is becoming increasingly important in today's world, as ever larger and more complex amounts of data are being produced in a wide variety of fields that need to be evaluated and interpreted. Information visualization deals with computer-based methods for the visual representation of abstract data. Since these abstract data (e.g. numerical or textual data) are without spatial reference, a meaningful visual structure has to be defined which optimally supports the interpretation of the data. This involves exploiting the power of the human visual perception system to capture characteristic properties of a set of data and to discover previously hidden patterns. Students know basic methods of information visualization to transform abstract data into suitable interactive representations that are adapted to human perception and underlying tasks. Information Visualization
The course consists of a theoretical and a practical part. While the theoretical part serves as a basic introduction to information visualization, a practical project offers the opportunity to apply and deepen this knowledge. Theory: Definition of information visualization, role of visualization in data analysis, reference model of visualization, data types and structures, visual perception and visual variables, visualization and interaction techniques, narrative visualizations (storytelling), presentation of common visualization libraries. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Software Design Methods |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Software Design MethodsGraduates are familiar with topics of software design and software system development specifically geared to interactive media, their fundamentals and the thought patterns behind them in theory and practice. Software Design Methods
Modern Software Architectures and Methods of System Design, Modeling- and Design-Patterns, Development Environments, Test-cases, Use-cases, Performance vs. Elegance. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Scientific Methods and Communication |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Scientific Methods and CommunicationGraduates are familiar with the basics of scientificity and scientific work. They are able to formulate questions correctly, are able to map the current state of research through targeted research and know the adequate methods for their subject area in order to answer questions. They acquire advanced knowledge about the chosen topic of their master's thesis, are able to formulate a scientific research question, answer it methodically and correctly and write it down in a stylistically correct manner. Scientific Methods and Communication
Introduction and practice of scientific research. Philosophy, rules and conventions of scientific work in science and engineering. Research ethics, research integrity, responsible research and innovation, due diligence, conserving resources. Scientific analysis and argumentation, research, clear presentation of complex phenomena, design of experiments, levels of description, scientific language, use of formal descriptions, mathematical notation, falsification and verification. Forms of publications, use of scientific literature, common rules of publishing. Students are required to conduct and present (both written and orally) a solid literature review on a specific topic summarizing the state of the art in that area. The result should be a publishable report similar to a professional conference paper, both in content and formal quality. Writing scientifc publicatins efficiently and eloquently in English as non-native speakers. Strategies for sustainable solutions and awareness for green IT in media-specific areas of applications. |
Interactive Technologies
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Real Time Graphics |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Real Time GraphicsStudents will have a detailed knowledge of advanced techniques in real-time computer graphics and will be able to implement them in selected applications. Students understand theoretical and mathematical aspects of algorithms used in computer games, computer-animated movies and visual film effects. Real Time Graphics
Computer graphics fundamentals; algorithms and software; rasterization; transformation pipeline; animation; lighting and illumination; materials; postprocessing and image-based techniques; non-photorealistic render-ing; texturing and texture-based techniques; shadows; ray tracing. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Special Topic in Interactive Media 1 |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Special Topic in Interactive Media 1Graduates are familiar with in-depth topics in the area of interactive media. Special Topic in Interactive Media I
Alternating selection of current in-depth topics in Interactive Media, such as: - Physical Prototyping - Green Media Systems - Digital Terrain Modeling etc. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Visual Computing |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Visual ComputingGraduates are familiar with advanced methods and techniques from the field of machine vision. In addition to mathematical and theoretical understanding, students also acquire practical skills in the implementation and application of algorithms and software that are used, for example, in robotics, medicine, biology, astronomy and media technology. Visual Computing
Fundamentals of digital image processing and machine vision; visual perception; colours; cameras; linear and non-linear filters; spectral methods; geometric operations; interpolation methods; multi-perspective methods; artificial intelligence; algorithms and software. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User Interfaces |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
User InterfacesGraduates possess detailed knowledge of the conception and design of user interfaces, taking into account various input and output modalities, interaction forms and interaction patterns. They are able to create respon-sive designs that ensure an optimized presentation of and interaction with content on displays of different sizes. In addition, they are able to design user interfaces that use new forms of interaction (e.g. gestures, tangibles, proxemics, speech). Students master useful techniques for realizing and testing user interface designs with the help of digital or physical proto-types (e.g. usability testing, Wizard-of-Oz experiment). User Interfaces
IUser interface design guidelines; mobile-first and responsive design of graphical user interfaces, creation of clickable prototypes, component-based UI design systems; planning, implementation and evaluation of methods for the evaluation of graphical user interfaces (e.g. usability study, heuristic evaluation); application of techniques for the design and evaluation of embodied user interfaces (e.g. elicitation study, wizard-of-oz experiment). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pervasive Computing |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pervasive ComputingStudents will be familiar with hardware components for the Internet of Things and will be able to plan, combine and program them for selected use cases. Platforms such as Raspberry PI, Arduino and simple microcontrollers, their programming and connection options to sensors and actuators are covered as well as data transmission via alternative communication channels such as radio, mesh networks (ZigBee, Z-Wave) and RFID. Furthermore, the students know the basics to plan and implement complex, cloud-based applications. Nextcloud, and established systems such as Amazon Webservices and Microsoft Azure are used as cloud platforms. Practical applications are demonstrated and developed using voice assistants such as Alexa, Siri and Google Now. Pervasive Computing
Hardware platforms and their I/O capabilities, programming of digital and analog inputs/outputs, addressing sensors and actuators on various examples. Secure communication in the cloud, authentication using Oauth2, client and server frameworks in PHP, Java and C++, WebSockets, Rest-APIs, VPN and Ipsec, machine-to-machine protocols in the cloud like MQTT and HTTPs, development of skills for voice assistants (custom skills, home automation skills, proactive events, ...), connection to IoT hardware for control and data acquisition. |
Game Developement
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Game Development |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Game DevelopmentGraduates know the complex workflow required for the concrete realization of computer games. Students have expertise with a professional 3D game engine and know agile development processes. Game Development
Introduction to game development with a 3D game engine; asset production, pipeline & integration; fundamentals of sound, networking and physics in modern games; integration of middleware APIs; scripting; data-driven game development; project management in the software domain, agile development methods, software prototyping & testing. In the course, game projects and tech-demos are defined together, each with an innova-tive feature. These are iteratively developed and tested in teams using agile methods. Special consideration is given to 3D multiplayer and net-work games. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Real Time Engineering |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Real Time EngineeringGraduates have knowledge of software and architecture patterns in the context of interactive real-time applications. They have an overview of the internal processes and mechanisms of current game and physics engines, as well as a theoretical and practical understanding of real-time physics simulation and its requirements and limitations. You have practical knowledge regarding the implementation of domain-specific problems using classical and visual programming methods. Real Time Engineering
Fundamentals of interactive real-time applications. Requirements and solutions for delay-free processing of user input, adaptation of the data model and visual and auditory output (data structures, software design patterns, architecture patterns). Fundamentals of real-time physical simulations. Implementation and integration with visual programming techniques (visual scripting). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Spatial Computing |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Spatial ComputingGraduates are familiar with different approaches for spatially connecting virtual and real content. In addition to theoretical and practical content, students also explore UX-related challenges in immersive areas such as virtual reality, augmented reality, embodied interaction, tangible user interfaces, etc. Spatial Computing
Fundamentals of immersive systems (AR/VR/XR) in a spatial context; integration of internal and external sensors and optical systems for tracking and location-based information; exploration of UI/UX challenges in the XR domain; approaches for multi-user, multi-modal "cross-virtuality" ap-plications |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Game Spaces |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Game SpacesDie Absolvent*innen besitzen Kenntnisse in der Konzeption und Umsetzung von Game Spaces (Spiele im geschlossenen/öffentlichen Raum, Spiele auf einer Mikro/Makro-Ebene). Sie sind in der Lage, Spielideen für mehrere SpielerInnen in diversen räumlichen Kontexten (Location-based Games; Remote/Collocated Play, Collaborative/Competitive Play in Groups) zu entwerfen und umzusetzen. Sie können Interaktionskonzepte für Game Spaces erstellen, evaluieren und diese prototypisch in den unterschiedlichen räumlichen Gegebenheiten umsetzen. Sie kennen die Möglichkeiten und Herausforderungen des Game Space Designs und sind mit den Entwicklungsprozessen bestens vertraut. Game Spaces
Erstellen von Game Designs mit Fokus auf den Game Space (Remote/Physical/Hybrid Settings), der darin agierenden Personen (Single/Group/Mass Play) und deren Verhältnis zueinander (Competitive/Group Play; Symmetric/Asymmetric Roles; Known/Unknown Co-Players; Expert/Novice). Umsetzen der Konzepte auf diversen Präsentationsplattformen (z.B., Large Public Displays, AR/VR Szenarios, Ana-log/Digital Games), Konfrontation der Prototypen mit einem ausgewählten Publikum (z.B., Museumsbesucher, anonyme Personen im öffentlichen Raum) |
Online Media
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hypermedia UX Engineering |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hypermedia UX EngineeringGraduates will be familiar with current architectures and frameworks for client-side web programming, as well as the workflow and tools for automating typical workflow in web development. They are able to design multimedia web applications themselves and implement them according to the latest standards and with current tools. Hypermedia UX Engineering
Modern JavaScript and other client-side languages (e.g. Type-script), workflow tools (e.g. Babel, Webpack), frameworks (e.g. React, Angular, Vue), components, state management (e.g. Redux, Vuex), web APIs (e.g. REST, GraphQL), UI frameworks. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hypermedia Frameworks |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hypermedia FrameworksStudents have gained an understanding of the principles of modern hypermedia application architectures with a focus on server-side application layers with different platforms. The students are able to select the most suitable tools for the respective application purpose from the multitude of existing and emerging tools and to use them correctly. Hypermedia Frameworks
Architectures of Hypermedia Applications, Server-Side Frameworks (e.g. Spring Framework, Ruby on Rails, Play Framework), Rapid Application Development, Reactive Programming, Web Services, REST, Persistence Libraries. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intelligent Media |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intelligent MediaGraduates have knowledge of applications of artificial intelligence methods for processing and analyzing text data. They can implement different methods for typical practical problems and evaluate the results. Further-more, visualization methods can be applied for presentation and analysis. Graduates understand the broad spectrum of problems, tasks and solu-tion approaches in NLP (Natural Language Processing). Intelligent Media
Fields of application of NLP, Basics of an NLP processing pipeline, Methods for text representation, Text classification, Topic Analysis, Information extraction, Chatbots, Applications in social media and e-commerce |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Big Data |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Big DataThe students know the process in Big Data pipelines and know important techniques that are necessary for the implementation of the individual phases. They can correctly assess important techniques that are necessary for scaling and processing large data volumes and make a suitable technology selection (e.g. SQL vs. NoSQL database) or define the decision criteria for this. Students will be able to choose appropriate visualiza-tions of the Big Data pipeline results. Big Data
Scaling horizontal vs vertical, Shards, ReplicaSets vs Partitions, Transactions ACID vs BASE, CoherenPaaS, Open Schema vs strict Schema, Document Oriented Databases, Map Reduce vs GROUP BY, HAVING, ROLLUP, CUBE , Indexes, Hashes, Vector Clocks, Paxos, RAFT In-Memory, Caching, CDN, Analytics + (AI), Statistics, Algorithms (NOT: NLP, Text Analytics and AI Basics), Graph Databases (e.g. Neo4J), CQL vs SQL recursive with, MongoDB, OpenSchema, vs JSON, Key Value Stores (e.g. Redis), Large RDBMS installations (e.g. Prostgres CITUS or Greenplum, Oracle Exadata), Polyglot Data Model. Big Data pipelines (e.g. ELK stack, Databricks), visualizations (e.g. with Kibana, Grafana, Phyton). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Special Topic in Interactive Media 2 |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Special Topic in Interactive Media 2Graduates are familiar with in-depth topics in the area of interactive media. Special Topic in Interactive Media II
Alternating selection of current in-depth topics in Interactive Media, such as: - Physical Prototyping - Green Media Systems - Digital Terrain Modeling etc. |
Datenjournalismus
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Datenintensiver Journalismus Grundlagen |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Datenintensiver Journalismus GrundlagenDie Absolvent*innen besitzen Kenntnisse über die gesellschaftliche Funktion von Journalismus, Öffentlichkeit und Medien, über das österreichische Mediensystem sowie Grundlagen des journalistischen Arbeitens. Sie sind vertraut mit Terminologien und Systematisierungen im Journalismus. Auch die redaktionelle Praxis und Arbeitsabläufe sind ihnen bekannt. Sie haben vertiefte Kenntnisse zur Geschichte und zum aktuellen Stand des Datenjournalismus und weiterer datenintensiver Verfahren im Journalismus. Schließlich verfügen sie über anwendungsbezogene Grundkenntnisse in den Bereichen Medienrecht, Medienethik, Datenschutz und Lizenzen. Datenintensiver Journalismus Grundlagen
Einführung, praxisnahe Kommunikations- und Medientheorien; Mediensystem in Österreich; redaktionelle Routinen, Ressorts, Darstellungsformen; Geschichte und Feld des Datenjournalismus, weitere redaktionelle datenintensive Anwendungsformen (computational journalism, automatisierter Journalismus, Newsgames, Publikumsforschung, Analytics/Dashboards); Medienrecht und Medienethik; Datenschutz und Lizenzen. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Datenintensiver Journalismus Praxis |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Datenintensiver Journalismus PraxisDie Absolvent*innen verfügen über ausgeprägte Reflexionskompetenz im Hinblick auf ihre eigenen und fremde Datenpraktiken. Dies betrifft u.a. Aspekte wie Datenschutz, Repräsentativität, Validität und Weiterverarbeitung von Daten. Auch können Absolvent*innen Datenmanipluationen identifizieren sowie auf ein breites Arsenal an Methoden zur Verifikation von Informationen zurückgreifen. Sie verfügen über vertiefte Kenntnisse der Produktion, Wirkung und Evaluation von Texten für digitale Kanäle. Auch haben sie sich Methoden der Produktentwicklung in redaktionellen Umgebungen angeeignet. Sie sind in der Lage, erfolgreich in/mit interdisziplinären Teams zu kommunizieren und zusammenzuarbeiten. Datenintensiver Journalismus Praxis
Einführung in die kritische Datenpraxis; Verifikation von Inhalten; Textproduktion für digitale Kanäle; Anforderungen und Erfolgsfaktoren für Online-Content; Content Strategy für Organisationen; Change Communication; Digital Business Strategy und Entrepreneurial Journalism: Design Thinking und agile Arbeitsorganisation für Medienprodukte; interkulturelle Kompetenz und Kommunikation |
Projects
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Project 1 |
10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project 1Graduates were given the opportunity to deal with concrete tasks in practice and to deepen their individual knowledge beyond the content of the courses at an independent working level corresponding to the master's degree. Project I
Guided project work on topics provided by faculty members or proposed by the student. Working in teams (of size 2–4) is encouraged to foster project management and team collaboration skills. Each project is coached by at least one faculty member. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project 2 |
10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project 2Graduates were given the opportunity to deal with concrete tasks in practice and to deepen their individual knowledge beyond the content of the courses at an independent working level corresponding to the master's degree. Project II
Guided project work on topics provided by faculty members or proposed by the student. Working in teams (of size 2–4) is encouraged to foster project management and team collaboration skills. Each project is coached by at least one faculty member. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thesis Project |
10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thesis ProjectPractical project for the master's thesis, guidance on scientific work. Thesis Project
The project in the 3rd Semester is explicitly dedicated to the practical part of the Master thesis. The coarse aim and scope of the thesis should be clear at the beginning of this semester based on a well worked-out initial proposal. This project should provide sufficient time for orientation and additional research to refine the topic and for implementing the practical part of the thesis. In most cases this project is performed individually (ex-ceptions are possible) and coached by the final thesis advisor. |
Master's Thesis
1. | 2. | 3. | 4. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Master´s Thesis 1 |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master´s Thesis 1Start of the preparation of the master thesis. This module is mainly aimed at independent work on the master thesis topic and communication of the results of the master thesis. Master´s Thesis I
Thesis research and Master thesis Part 1. Every thesis is coached individually by a faculty member with regular obligatory meetings. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master´s Thesis 2 |
19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master´s Thesis 2Preparation of the master's thesis. This module is mainly aimed at the independent work on the master thesis topic and the communication of the results of the master thesis. Master´s Thesis II
Thesis research and Master thesis. Every thesis is coached individually by a faculty member with regular obligatory meetings. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Masterprüfung |
1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MasterprüfungMasterprüfung
|
Kontakt
E-MailE im@fh-hagenberg.at
TelefonT +43 5 0804 22104